

الجامعة االردنية

	TO AT 1	EVC 01 02 02 A
Form:	Form Number	EXC-01-02-02A
		2963/2022/24/3/2
Course Syllabus	Issue Number and Date	
		5/12/2022
	Number and Date of Revision or Modification	2/(10/12/2023)
	Deans Council Approval Decision Number	50/2023
	The Date of the Deans Council Approval Decision	26/12/2023
	Number of Pages	06

1.	Course Title	Physical Chemistry 1 (0303241)
2.	Course Number	0303241
3.	Credit Hours (Theory, Practical)	(3,0)
3.	Contact Hours (Theory, Practical)	(3,0)
4.	Prerequisites/ Corequisites	0303102
5.	Program Title	BSc in chemistry
6.	Program Code	0303
7.	School/ Center	School of Science, The University of Jordan
8.	Department	Chemistry
9.	Course Level	BSc
10.	Year of Study and Semester (s)	2 nd year
11.	Other Department(s) Involved in	NA
11.	Teaching the Course	
12.	Main Learning Language	English
13.	Learning Types	☐ Face to face learning ☐ Blended ☐ Fully online
14.	Online Platforms(s)	☐ Moodle ☑ Microsoft Teams ☐ Exambuilder
15.	Issuing Date	-
16.	Revision Date	23-11-2024

17. Course Coordinator:

Name: Professor Ehab AlShmaileh	Contact hours: Daily 9-12.30
Office number: 024	(TUE) Phone number: 22141
Email: ehab@ju.edu.jo	

الجامعة االردنية

18. Other Instructors:

B 1	
	_
	\vdash

19. Course Description:

As stated in the approved study plan.

1. The Nature of Physical Chemistry and the Kinetic Theory of Gases:

Classical mechanical and equilibrium concepts, ideal gases and equation of state, kinetic theory of gases, molecular collisions, barometric distribution law, real gases, van der Waals equation of state (Chapter 1).

2. The First Law of Thermodynamics:

Equilibrium states and reversibility, energy, heat and work concepts, thermochemistry, ideal gasrelationships, real gases (Chapter 2).

3. The Second and Third Laws of Thermodynamics:

The Carnot cycle, irreversible processes, entropy concept and entropy changes, third law of thermodynamics, equilibrium conditions, Gibbs free energy, Maxwell relations, Gibbs-Helmholtz equation(Chapter 3).

4. Chemical Equilibrium:

Equilibria involving ideal and non-ideal gases, solution equilibrium, heterogeneous equilibrium, tests of equilibrium, coupled reactions, temperature dependence of equilibrium constants (Chapter 4).

5. Phases and Solutions:

Phase recognition, vapor pressure relations, classification of phase transitions, Raoult's and Henry's laws, partial molar quantities, solution thermodynamics, colligative properties (Chapter 5).

6. Phase Equilibria:

Equilibria between phases, one-component systems, binary systems involving vapor, condensed binary systems, ternary systems (Chapter 6).

20. Program Intended Learning Outcomes:

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program), the program's student outcomes must fulfill the above ABET student outcomes. You can add new outcomes for your program, but all the six ABET-outcomes must be included.

- SO-1. Problem Solving: Graduates will be able to apply mathematical and scientific knowledge to identify, formulate, and solve technical or scientific problems relevant to the discipline of chemistry.
- SO-2. Design: Graduates will be able to use their understanding of chemistry concepts and principles to formulate and design systems, processes, procedures, or programs to meet desired goals and outcomes.
- SO-3. Experimental Skills: Graduates will be able to design, conduct, and analyze experiments or test hypotheses, utilizing appropriate chemical techniques and scientific judgment to draw meaningful conclusions.
- SO-4. Communication: Graduates will be able to communicate scientific information effectively and accurately to a range of audiences, including both technical and non-technical audiences.
- SO-5. Ethics and Global Context: Graduates will understand and apply ethical and professional responsibilities in the context of the impact of technical and scientific solutions on global, economic, environmental, and societal issues.
- SO-6. Teamwork: Graduates will be able to work effectively as part of a team, establishing goals, planning tasks, meeting deadlines, and analyzing risk and uncertainty in the context of chemistry-related projects and initiatives.
- SO-7. Handling Chemicals: An ability to apply the proper procedures for safe handling of chemicals.
- **21. Course Intended Learning Outcomes:** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)
 - CLO-1 To provide the students with the knowledge and capacity to nature of physical chemistry andkinetic theory of gases.
 - CLO-2 Outline the first, second and third laws of thermodynamic
 - CLO-3 Apply chemical equilibrium to chemical processes.
 - CLO-4 Describe phases and solutions in relation to phase equilibria.

Course CLOs	The learning levels to be achieved									
	Remembering	Understanding	Applying	Analysing	evaluating	Creating				
1	X	X	X	X	X					
2	X	X	X	X	X					
3	X	X	X	X	X					
4	X	X	X	X	X					

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program SOs Course CLOs	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)
Course CLOs							
1	X				X		
2	X				X		
3	X				X		
4	X				X		

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types (Face to Face/ Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous	Evaluation Methods	Learning Resources
1	1	The nature of physical chemistry and the kinetic theory of gases	-1					Text book
2	2	The nature of physical chemistry and the kinetic theory of gases	1	Face to Face	In class	S	Quizzes + Exam	Text book
3	3	The first law of thermodynamic	2	Face to Face	In class	S	Quizzes + Exam	Text book
4	4	The first law of thermodynamic	2	Face to Face	In class	S	Quizzes + Exam	Text book
5	5	The first law of thermodynamic	2	Face to Face	In class	S	Quizzes + Exam	Text book
6	6	The second and third laws of thermodynamics	2	Face to Face	In class	S	Quizzes + Exam	Text book
7	7	The second and third laws of thermodynamics	2	Face to Face	In class	S	Quizzes + Exam	Text book
8	8	The second and third laws of thermodynamics	2	Face to Face	In class	S	Quizzes + Exam	Text book
9	9	The second and third laws of thermodynamics	2	Face to Face	In class	S	Quizzes + Exam	Text book
10	10	Chemical equilibrium	3	Face to Face	In class	S	Quizzes + Exam	Text book

الجامعة االردنية

11	11	Chemical equilibrium	3	Face to Face	In class	S	Quizzes + Exam	Text book
12	12	Phases and solution	4	Face to Face	In class	S	Quizzes + Exam	Text book
13	13	Phases and solution	4	Face to Face	In class	S	Quizzes + Exam	Text book
14	14	Phase equilibria	4	Face to Face	In class	S	Quizzes + Exam	Text book

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLOs	Period (Week)	Platform
Quizzes	20	All	1-4	4, 12	Face to Face
Mid	30	All	1,2	8	Face to Face
Final	50	All	1,2,3,4	16	Face to Face

25. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.): A previous knowledge of arithmetic/mathematical skills is needed as well as how to use the scientific calculator.

26. Course Policies:

A. Attendance policies:

Students should attend at least 85% of the total number of lectures.

B- Absences from exams and submitting assignments on time:

Students who miss an exam must submit an acceptable excuse and then a makeup exam will be appointed.

C- Health and safety procedures:

Strictly according to university regulations.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

Followed according to university regulations.

- E- Grading policy:
- 1. Mid exam 30%
- 2. Semester/Lab work 20%
- 3. Final exam: 50%

The letter grade scale is adopted.

F- Available university services that support achievement in the course:

27. References:

Required book (s), assigned reading and audio-visuals: Physical Chemistry, 4th edition, by Laidler, Meiser and Sanctuary, Houghton Mifflin, Boston (2003)

B- Recommended books, materials, and media:

"Physical Chemistry," 3rd Edition by R. J. Silby and R. A. Alberty, John Wiley Sons, New York, New York (2000).

"Physical Chemistry: a modern introduction," by C. E. Dykstra, Prentice-Hall Publishers, Upper Saddle River(1997).

"Physical Chemistry," 6th Edition by G. M. Barrow, Mcgraw-Hill, Boston, Massachusetts (1996).

28. Additional information:

This course is required by all chemistry and chemical engineering students at the University of Iordan.

[&]quot;The Elements of Physical Chemistry," 2nd Edition by P. W. Atkins, Oxford University Press, London, UnitedKingdom (1996).

[&]quot;Physical Chemistry," 4th Edition by I. N. Levine, McGraw-Hill, New York, New York (1995).

الجامعة االردنية

Name of the Instructor or the Course Coordinator: Signature: Date:23-11-2024

Dr. Ehab AlShamaileh, Prof.

Name of the Head of Quality Assurance Committee/ Department **Dr., Prof.** Signature:

Date:

الجامعة االردنية

Name of the Head of Department

Dr. Murad A. AlDamen, Prof.

Name of the Head of Quality Assurance Committee/ School or Center

Signature:

Signature:

Date:

Date:

Name of the Dean or the Director

Dr. Mahmoud Jaghoub, Prof.

Signature:

Date: